DEPARTMENT OF ELECTRNICS & COMMUNICATION ENGINEERING, KITSW

ASSIGNMENT-1

Topic	Assignment Posted On	Submission Due On
Semiconductor Theory	18.01.2016	28.01.2016

- 1 What is a signal? Sketch and explain different types of signals.
- 2 Explain the differences among conductors, insulators and semiconductors using the Energy Band Diagrams
- 3 Define (i) Mass action law (ii) Mobility and (iii) Conductivity
- 4 Explain how conduction takes place in intrinsic semi conductor
- 5 What is doping? Explain how n and p-type semiconductors are formed
- 6 Explain how conductivity changes with doping
- 7 What is Fermi level? Explain the effect of doping and temperature on Fermi level
- An n-type Silicon bar 0.1 cm long and 100 μ m² in cross-sectional area has a majority carrier concentration of 5×10^{20} / m^3 and the carrier mobility is 0.13 m^2 /V-s at 300^0 k. If the charge of an electron is 1.6×10^{-19} C, then find the resistance of the bar.
- Calculate the values of conductivity and resistivity of intrinsic Silicon semiconductor with hole mobility μ_p =0.055 m^2/V -s and μ_n =0.145 m^2/V -s. Assume the concentration of electrons in the intrinsic semiconductor to be 1.5625x 10^{16} / m^3
- 10 In a Germanium sample, a donor type impurity is added to the extent of 1 atom per 10^8 Germanium atoms. Show that the resistivity of the sample drops to 3.7 Ω -cm. The given parameters are: μ_n = 3800 cm²/Vs; μ_p =1800 cm²/V-s; n_i = 2.5×1013/cm³; N_{Ge} = 4.41 ×10²²/cm³; p_i = 1.602 × 10⁻¹⁹ C.

Instructions:

- 1. Maintain a separate 200 pages note book for BEL- Assignments and submit the solutions during the lunch break on or before due date @ Room No: B-I-208
- 2. Write the questions and answer/solve them legibly and neatly
- 3. Make an honest effort to solve the assignment problems. In case of difficulty, discuss with friends/ Teacher and refer to solutions as a last resort. Finally, rework the solutions on your own for submission
- 4. Students will be graded on the quality of their work

Faculty: K. Ashoka Reddy, Room #: BI-208